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Abstract

We study the quantum oscillations in the BiSbTe3 topological insulator. In addition to the Shubnikov-de Haas (SdH)
oscillation, the Aharonov-Bohm-like (ABL) oscillations are also observed. The ABL oscillation period is constant at each
Landau level (LL) which is determined from the SdH oscillation. The shorter ABL oscillation periods are observed at
lower LLs. The oscillation period is proportional to the square root of the LL at temperatures. The ratio of the ABL
oscillation period to the effective mass is weak LL dependence. The LL-dependent ABL oscillation might originate
from the LL-dependent effective mass.
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Introduction
Aharonov-Bohm (AB) interference originates from the
carrier wavefunction interference in a loop which might
be patterned ring [1, 2], material geometric structure
[3–6, 8–11], or carrier transport trajectory [12]. The mag-
netic field, B, through the loop will induce carrier wave-
function phase shift that leads to periodic wavefunction
interference oscillations. This oscillation period is sensi-
tive to the carrier transport characteristics, such as carrier
coherence length and mobility [3, 12]. The quantum inter-
ference is an excellent tool to detect material transport
characteristics and understand intrinsic mechanisms. Due
to the short carrier coherence length and the small flux
quantum, the quantum interference is mainly reported at
high mobility nanowires or patterned nano-rings at low B
[3–6, 8–11]. Reports on a macroscopic system at high B
are rare. The works on AB quantum interference at high
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B are less investigated, and the related mechanism is less
understood.
In this work, quantum oscillations were performed in

a BiSbTe3 topological insulator macroflake at high B. In
addition to the Shubnikov-de Haas (SdH) oscillation, the
Aharonov-Bohm-like (ABL) oscillation was observed. The
ABL oscillation period is B-dependent and is different
from the traditional AB oscillation, which the oscillation
period is independent of B. The observed ABL oscilla-
tion period is constant at each Landau level (LL), which
is determined from the SdH oscillation. The shorter oscil-
lation periods are observed at lower LLs. The oscillation
period is proportional to the square root of the LL at tem-
peratures. The ratio of the ABL oscillation period to the
effective mass is weak LL dependence. The LL-dependent
ABL oscillation might originate from the LL-dependent
effective mass.

Experimental Method
The growth condition of the BiSbTe3 single crystal is the
same as our previous work on the topological insula-
tors [13–16]. Our previous work demonstrated that TI
with extremely high uniformity can be obtained using the
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RHFZ method [13–16]. Raman, EDS, and XPS spectrum
proved that the crystal is BiSbTe3. The BiSbTe3 single crys-
tal flakes were obtained using the Scotch-tape method.
The cleaved flake geometry is roughly 3 mm in length,
2 mm in width, and 170 μm in thickness. Magnetotrans-
port measurements were performed using the standard
six-probe technique in a commercial apparatus (Quantum
Design PPMS) with a B of up to 14 T. The B was applied
perpendicular to the large cleaved surface. The data points
are taken per 100 Gauss at magnetic field region between
6 and 14 T in the steady magnetic field mode, instead of
the sweeping magnetic field mode.

Results and Discussion
Figure 1 shows the magnetoresistances (MRs) as a func-
tion of B. The R(14T)/R(0T) reaches 10 and is higher
than most reported values in BixSb2−xTeySe3−y topologi-
cal insulators [17–23, 23–33]. Both theoretical and exper-
imental investigations support that the MR ratio is pro-
portional to the carrier mobility [34], The measured high
MR ratio supports the high quality of our BiSbTe3 sample.
The top-left inset reveals the dR/dB as a function of 1/B. It
reveals that periodic oscillations and oscillation peaks and
dips are at the same B at 2 and 8 K. This is known as SdH
oscillation that originates from a two-dimensional sys-
tem. The SdH oscillation period corresponds to the Fermi
momentum vector, kf . The bottom-right inset shows the
fast Fourier transform (FFT) of the SdH oscillation. A

sharp peak at 48 T is observed for both 2 and 8 K. Follow-
ing the Onsager relation, one could estimate kf through

F = �k2f
2e , where F is the SdH oscillation frequency. The

F = 48 T leads to the kf = 3.8Å−1, which is consis-
tent with the observed value from ARPES from a different
batch of the same crystal and from reported values in liter-
ature [35]. That supports the high quality and uniformity
of our BiSbTe3 crystal. As well as the SdH oscillation, the
top-left inset reveals oscillations with a short period. To
suppress the influence of the SdH oscillation and extract
oscillation characteristics, the d2R/dB2 is performed.
Figure 2 exhibits the dR/dB and d2R/dB2 as a func-

tion of B at 2 and 8 K. Dot lines label oscillation peaks
in d2R/dB2, and long dash lines correspond to B of LLs
that are determined from the extracted SdH oscillation
frequency. The periodic oscillations is similar to the AB
oscillation. The AB oscillation period is expressed as
�B = �

A . � is the flux quantum, where h
e , and A is

the geometry area looped by clock-count and anti-clock-
count carrier trajectories in a confined structure. Due
to the small flux quantum, the AB oscillation is mainly
observed in confinement by artificial nanostructures [1,
2], such as nano-rings and nanowires [3–11]. Recently, it
is reported that carrier elastic scattering trajectory might
form a series of connected closed loops in a macroscopic
system. A B flux through these loops would induce car-
rier wavefunction phase shift and lead to periodic ABL

Fig. 1 The magnetoresistance as a function of magnetic fields at 2 and 8 K. The top-left inset shows the dR/dB as a function of inverse magnetic
fields. It reveal a periodic oscillations. The bottom-right inset shows the fast Fourier transform of the SdH oscillation and a sharp peak at 48 T for both
2 and 8 K
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Fig. 2 The dR/dB and d2R/dB2 as a function of B at 2 and 8 K. It shows periodic oscillations and the oscillation period is Landau level dependence

oscillations [12]. The extracted elastic scattering length
is roughly 150 nm which corresponds to the oscillation
period with 0.02 T and is consistent with our experimental
observation.
Following the dot lines in Fig. 2, one could note that

the oscillation period is constant at each LL and the oscil-
lation period is shorter at lower LLs. This behavior is
different from the traditional AB oscillation. To extract
and determine these oscillation periods, FFT is performed
at different LLs. Figure 3 shows the FFT at different LLs
at 2 and 8 K, and it clearly reveals the higher oscillation
frequency at lower LLs at 2 and 8 K.
A similar LL-dependent ABL oscillation is reported at

the integer quantum Hall regime in semiconductor two-
dimensional electron gas [36, 37]. It has been interpreted
either as constructive interference of one-dimensional
electron traveling along edge channels or as quantum
wave interference of edge electrons. The carrier transport
path in different edge channels leads to different effective
areas in a confined pattern and eventually to different ABL
oscillation periods in edge channels at different LLs [38–
40]. Further studies on electric Fabry-Perot interferome-
ters in integer and fractional quantum Hall regime reveal
that the ABL oscillation period is related to the flux period
by �

f , where f is the fully occupied LL in the constrictions.
The oscillation period is expected to be �

Af , where A is the
geometry area of the confined shape [41, 42].

Table 1 lists the extracted oscillation periods from
the FFT at different LLs and temperatures. The analysis
reveals that the ratio of the oscillation period to the square
root of LL is constant at each temperature. This is dif-
ferent from the behavior of Fabry-Perot interferometer in
which the oscillation is inversely proportional to LLs [41,
42]. On the other hand, the electric Fabry-Perot interfer-
ence originates from carrier trajectory coupling between
different LLs from inside and outside a confined pattern
[37]. The oscillation is strongly related to the patterned
geometry. There are no artificial patterns on the surface
of our samples, and there should be no suitable coupling
channels between different LLs. Furthermore, the geom-
etry sizes of our samples are in the millimeter scale and
the related AB oscillation period would be too small to be
detected. Despite these differences from existing works,
we think that aside from the geometric area and carrier
coherence length, the intrinsic carrier characteristic might
play a critical role on the LL-dependent ABL oscillation
[3, 43].
Following the Lifshitz-Kosevich (LK) theory, one can

extract characteristic parameters of the transport carri-
ers in the surface state of the topological insulator, and
the temperature dependence of the amplitude of the SdH
oscillation is expressed as

�Rxx(T ,B) ∝ λ(T/B)

sinh(λ(T/B))
,



Huang et al. Nanoscale Research Letters          (2020) 15:171 Page 4 of 6

Fig. 3 The fast Fourier transform of the dR/dB at different Landau levels and temperatures. The higher oscillation frequency peak is observed at
lower Landau levels

where λ(T/B) = (2π2kBTmcyc)/(�eB). Figure 4 shows
the extracted normalized SdH oscillation amplitude as a
function of temperature at different LLs. It agrees well
with the LK theory and reveals different tendencies at dif-
ferent LLs. The fitting results support that the mcyc =
0.152m0, 0.170m0, 0.185m0, and 0.191m0, wherem0 is the
free electron mass, for N = 4, 5, 6 and 7, respectively.
These values are consistent with the reported effective
masses in topological insulators [21, 22]. This Landau
level-dependent effective mass is recently observed in the
3DDirac semimetal ZrTe5 [44]. However, the origin of the
magnetic field-dependent effective mass is not clear yet.
It needs further study to clarify the intrinsic mechanism.

Table 1 List of the extracted oscillation period at different
Landau levels and temperatures

Landau level Oscillation period (T) OP/
√
N OP/mcyc (T/m0)

N OP

4 (2 K) 0.215 0.107 1.41

5 (2 K) 0.235 0.105 1.38

6 (2 K) 0.260 0.106 1.40

7 (2 K) 0.284 0.107 1.45

4 (8 K) 0.206 0.103 1.35

5 (8 K) 0.233 0.104 1.37

6 (8 K) 0.249 0.101 1.34

7 (8 K) 0.260 0.098 1.36

The oscillation period is proportional to the square root of Landau level

The different effective mass would directly deviate the
intrinsic carrier transport characteristic at Fermi surface,
such as Fermi velocity, which is directly related to the car-
rier phase coherence length. The higher effective mass
would lead to lower coherence length that corresponds
to the longer AB-like oscillation period. This is qualita-
tively consistent with our experimental observation. As
shown in Table 1, the ratio of the AB-like oscillation
period to the effective mass shows weak LL dependence.

Fig. 4 The extracted normalized SdH oscillation amplitude as a
function of temperature at different Landau levels. It agrees well with
the LK theory and reveals different tendency at different Landau levels
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The Landau level-dependent effective mass might be one
of the intrinsic effects that leads to the LL-dependent
oscillation period.
LL is a transport characteristic of a two-dimensional

system. It indicates that the LL-dependent oscillation
might have originated from the surface state carrier in
TIs. Berry phase is a characteristic of transport carriers.
Extracting the Berry phase might help identify the source
of these LL-dependent periodic AB oscillations.We define
the AB oscillation index number by dividing the corre-
sponding B of oscillation peaks in dB/dB by the related
oscillation period in the LL. It reveals that the index num-
ber of oscillation peaks in dB/dB corresponds toN +0.25,
where N is integer, for all oscillations in different LLs and
temperatures. This further supports that the AB oscil-
lation period is related to LLs. Figure 5 shows that AB
oscillation index numbers are proportional to B at dif-
ferent LLs and temperatures. The intercept is 0.25 which
indicates a 0.5 phase shift in the plot of the AB oscillation.
This supports the Berry phase is π and the observed AB
oscillationsmight be the carrier transport characteristic of
the surface state in our BiSbTe3 topological insulator [45].

Conclusion
We have reported the quantum oscillations in a
BiSbTe3 topological insulator macroflake. In addition
to the Shubnikov-de Haas (SdH) oscillation, it reveals
Aharonov-Bohm-like (ABL) oscillation. The ABL oscilla-
tion period is B-dependent. The ABL oscillation period
is constant at each Landau level (LL). The shorter oscil-
lation periods were observed at lower LLs, which was
determined through the SdH oscillation. The oscillation
period is proportional to the square root of the LL at

Fig. 5 The AB oscillation index number as a function of B at different
Landau levels and temperatures. The intercept is 0.25 which indicates
a 0.5 phase shift in the plot of the AB oscillation. This supports the
Berry phase is π

different temperatures. The ratio of the ABL oscillation
period to the effective mass is weak LL dependence. The
LL-dependent ABL oscillation might originate from the
LL-dependent effective mass.
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